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1 Summary

We implemented a cache simulator for a NUMA multiprocessor machine using directory based cache
coherence and used the simulator to analyze the cache behavior of various synchronization lock
implementations. We used Intel’s pin program and a custom written pintool to gather memory
access traces of different parallel programs written using these locks and compared their performance
under the MSI, MESI and MOESI cache coherence protocols. We created plots illustrating the
differing cache performance of the locks and the differences between the protocols under various

metrics such as cache hits/misses, main memory accesses and interconnect events.

2 Background

2.1 NUMA

NUMA (Non Uniform Memory Access) is a multiprocessing computer architecture in which memory
access times depend on the proximity of the memory location to the processor requesting the access.
It is often used in distributed machines, as it means that processors have faster access to a subset of
localized memory while still retaining the shared memory abstraction at the expense of occasional

higher latencies when accessing memory further away.
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2.2 Cache Coherence and Directories

In multiprocessor machines, where each processor has its own cache(s), lines of memory become
replicated in multiple places, which means that different processors can observe different values for
reads to the same memory address. For example, if two processors have the same line of memory in
each of their caches and one writes to it, the other will observe stale data on future reads. In order
to fix this problem, modern multiprocessor machines implement cache coherence systems within
which caches communicate with each other under various coherence protocols to ensure each cache
is aware of the current state of the line.

There are two main ways to implement cache coherence for a write-back, write-allocate cache -
snooping-based and directory-based. Snooping-based cache coherence is suited to smaller machines
with relatively few processors, as it relies on the idea that coherence information is broadcasted
on some system-wide interconnect to all other caches. However, this protocol doesn’t scale very
well to larger machines as the cost of the broadcasts scales with the number of processors. Instead,
large scale machines often use a directory-based implementation of cache coherence, in which a
directory is used to track the set of caches that contain a line of memory. Under this scheme,
coherence messages can be sent point-to-point to just the caches that need to be updated with new
coherence information, which means the protocol scales well with the number of processors. In
NUMA machines, a distributed directory scheme is often used, meaning each NUMA node has its
own directory which tracks the state of each line of memory in that node and these directories can
communicate with each other to coordinate the system (see figure 1).

For each line in memory, the directories maintain a set of P presence bits, where P is the number
of processors in the system, as well as two bits representing the state of the line. A line can be in

one of three states:
1. Uncached (U) - the line is not present in any processor’s cache
2. Shared (S) - the line is in one or more caches and is clean

3. Exclusive/Modified (EM) - the line is in exactly one cache who owns the data
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Figure 1: A distributed directory on a NUMA system (source)

In order to implement the MOESI coherence protocol (discussed in 2.3), our directory also stores
a cache identifier of which cache has the line in an owned state so the directory can forward read
requests from other sharing caches to that cache.

The directory receives messages on the interconnect from caches, such as a BusRd when a cache
wants to read a line or a BusRdX when a cache wants to read a line with the intention of writing to
it (i.e. it needs exclusive access to the line) and responds to the messages by transitioning its state
and sending its own coherence messages to the relevant caches. The state transitions are illustrated

in figure 2 below.

2.3 Cache Protocols

The caches also maintain a few bits of state for each line they have cached. Many different protocols
are used here, but we chose to implement and analyse 3 - MSI, MESI and MOESI (each letter
corresponds to a state the cache can be in).

e M (modified) - the cache holds a dirty modified copy of the line, no other caches have copies

e O (owned) - the cache holds exclusive rights to a line, other caches may read but only this

cache may modify and must broadcast changes to all sharers

e E (exclusive) - the cache has the only copy of the line and the line is clean


http://www.cs.cmu.edu/afs/cs/academic/class/15418-f20/public/lectures/11_directorycoherence.pdf

A/B:ifaction Ais
observed by directory,
action B is taken

u
(Uncached)

BusRd / WriteData BusRd / ReadData Eviction / —

-
i
Eviction (1 sharer) / -- BusRdX/ Fetch, ¢
Invalidate,
WriteData \,

BusRdX/ Invalidate,
WriteData

BusRd / Fetch,
ReadData

) BusRd/ReadData
7

Figure 2: The state transitions of a directory

e S (shared) - the cache is one of at least one other sharer of the line and the line is clean

e I (invalid) - the block is not valid in the cache and cannot be read/written

where the states in MSI are a subset of those in MESI, etc. The cache lines transition between
these states in response to events from the processor, as well as events received on the interconnect
from the directories. The state transition diagrams for the coherence protocols we implemented are
presented below (the interconnect transactions are explained in tables 2 and 3).

MSI requires two interconnect messages for the common case of reading an address and then
writing to it (e.g. incrementing a variable). MESI helps to reduce this inefficiency by adding the E
state, which means that if a processors wants to do a read-write and no other processor is currently
sharing the data, it will get an exclusive copy of the data for the read which can then be upgraded

to a modified copy for free without any interconnect traffic.
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Figure 4: The state transitions in MESI (source)

The MOESI protocol operates very similarly to the MESI protocol, with the addition of the 0
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state. This protocol reduces the number of memory writes necessary, as now when another CPU
wants to read a dirty line, a flush is not necessary as the data is now sent over the interconnect

directly from the owning cache.
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Figure 5: The new state transitions in MOESI (other transitions remain the same as MEST)

2.4 Locks

In order to evaluate the cache simulator, we run the simulator on a large number of traces generated
from running parallel programs. We chose to analyse several lock types, as locks serve as a
fundamental aspect of synchronizing parallel programs and they exhibit interesting cache coherence
behaviour as their memory can be highly contended. We chose to implement the following types of

locks to look for differences in their performance in various cache protocols:

e test-and-set: This lock relies on the atomic test and set instruction. The lock will spin on
the test and set instruction, checking repeatedly whether a variable is in a desired unlocked

state and trying to set it to be locked if so.

e test-and-test-and-set: This lock improves on the test-and-set lock by reducing the traffic
on the interconnect by spinnning on a test while the lock is locked, then only attempting to

acquire the lock with test-and-set when it knows the lock has been released.

e ticket lock: The ticket lock provides an improvement over the first two lock types for two
reasons - fairness (by guaranteeing that locks are granted in the order they are requested) and

fewer invalidations. It results in fewer invalidations since only a read is required to acquire the



lock, instead of a write in the test-and-test-and-set case, which means the only invalidations
come from the release of the lock. It is implemented by maintaining a ticket number that each
thread increments when it acquires the lock, and a serving number which is incremented when
a thread releases the lock. A thread then acquires the lock when its ticket number is equal to

the serving number.

e array lock: The array based lock is similar to the ticket lock in that it maintains fairness,
while providing a further decrease in the amount of interconnect traffic. To do so, the lock
uses an array where a thread acquires the lock by waiting on an element ofthe array to be set
to the unlocked state, and released the lock by setting the next element to the unlocked state.
This lock can be further improved by having each array element padded to be on separate
cache lines, which prevents false sharing. The drawback of this lock is the space requirement,

which is linear in the number of threads.

3 Approach

3.1 Pintool

We used Intel’s pin program to instrument the binaries of several parallel programs we had written
in order to generate memory access traces of the programs. pin allows you to insert callbacks into a
compiled binary which run whenever certain instructions are executed. In our case, we used pin’s
built in INS_MemoryOperandIsRead and INS_MemoryOperandIsWrite functions to insert a callback
after every memory read and write from the programs under analysis.

Our pintool creates a trace that looks like the following:

[CPU] [R/W] [Address] [NUMA Nodel

1 R O0x7ffefl7ecea8 0O

2 W Ox7ffefl7eceal 1

3 W O0x7ffefl7ece90 O
)

O0x7ffefl17ece88 0O



We make the simplifying assumption here that each thread is running on a different physical
CPU, which obviously is not always the case but it allows us to better analyse the programs we write
since we get a more even distribution of work between the CPU cores. We found when generating
traces that even programs with high amounts of parallelism ran on only a few physical processors.

We also used a simple probabilistic method to decide which NUMA node an address resided on.
When running a program through pin, we will periodically read and parse the Linux proc filesystem’s
numa maps. This provides information on various regions of memory and how many numa nodes
they are mapped to. This information is not precise however; it will only indicate the number of
pages in the region that belong to each node (e.g. if the region has 20 pages, it may indicate there
are 8 on node 0 and 12 on node 1). Whenever we encounter an address on a previously unseen page,
we probabilistically assign that page to one node from the given region based on the ratios. This

information is saved so that future accesses to the same page are given its numa node consistently.

3.2 Usage

Our simulator is run with the following parameters:

-t <tracefile>: name of memory trace to replay

-p <processors>: number of processors used to generate trace
-n <numa nodes>: number of NUMA nodes used to generate trace
-m <MSI | MESI | MOESI>: the cache protocol to use

-s <s>: number of set index bits (number of sets = 27s)

-E <E>: associativity (number of lines per set)

-b <b>: number of block bits (number of blocks = 27b)

-v: verbose output that displays trace info

-a: display aggregate stats

-A: display aggregate stats not including processor O

-i: display individual stats (i.e.) per cache, per NUMA node

-h: help

The user specifies how many processors and NUMA nodes the trace was generated with, as well
as the protocol to use and the properties of the cache (i.e.e how many blocks per set, the size of

the blocks and how many sets per cache). These default tos = 6, b = 6, E = 8, giving an 8-way



associative 32kB cache which is the configuration of an Intel L1 cache.

The user can also specify the output of the simulator using the -Aaiv flags. The -v flag gives a
verbose output which prints the interconnect events that are happening on a per memory access
basis. The -a -i flags print stats after running the program on an aggregate or per cache level. We
noticed that for the smaller programs that it was feasible to generate pin traces for, thread 0 had
far more activity than the other threads since it was being used to set up the program and create
other threads, etc., so we included the -A flag to give aggregate stats without the first thread’s stats

being included. These flags can be used together to get the entire output of the program.

3.3 Stats and Latencies

The entire list of stats the simulator collects are shown below:

struct Stats {

size_t
size_t
size_t
size_t
size_t
size_t
size_t
size_t
size_t

size_t

Our simulator also has a simple timing model, in which it uses fixed latencies for different events.
The default latencies are shown in table 1, but these are adjustable by editing the latencies.h file
which defines these as constants. The latencies we used are based off latencies we found online for

commonly used interconnects and memory systems. The NUMA distance on andrew is 2, so we set

hits_;

misses_;

flushes_;

evictions_;
dirty_evictions_;
invalidations_;
local_interconnect_;
global_interconnect_;
memory_reads_;

memory_writes_;

//
//
//
//
//
//
//
//
//
//

cache hits

cache misses

flushes from cache to memory
evictions from cache

evictions of dirty lines from cache
invalidations due to coherence
intra-NUMA node interconnect messages
inter -NUMA node interconnect messages
reads of main memory

writes to main memory

the global interconnect latency to be twice the local.



Event Latency
Cache Access Latency Ins
Memory Access Latency 100ns
Local Interconnect Latency 1ns
Global Interconnect Latency 2ns

Table 1: Default Latencies

The combination of these latencies and the stats we collect allows us to get rough estimates of
how long the memory accesses of programs should take. We present the latency reports as part of

the output when the user runs the program with stat reporting enabled.

3.4 The Architecture

We used C++ to write the simulator for a few reasons. Firstly, the traces are very large (~100MB+)
so we needed a performant language to get through the traces in a reasonable amount of time.
Secondly, we are modeling a lot of physical objects such as caches and directories, so it allowed us
to encapsulate these objects into classes which made them a lot easier to work with than if we had
used C. It also meant we could reduce repetition in our code by doing things like having an abstract
cache block class which we could inherit from to model other block types. The simulator is divided
into 5 main classes - NUMANode, Cache, Directory, Interconnect, and CacheBlock.

Given arguments about how many processors are in the node and what coherence protocol is
being used, a NUMANode is responsible for setting up a Directory, Interconnect, and one or more
Caches. The main function reads the trace file and sends the reads/writes to the relevant NUMANode
which passes them on to the correct cache. It is also responsible for aggregating stats from all
entities in the node once the trace has been ran.

The Interconnect class holds the logic for communicating between Caches and their Directory,
as well as between different NUMANodes. It keeps track of how many messages have been sent from a

Cache to a Directory and vice versa, as well as how many messages have been sent between NUMA
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nodes which allows us to account for the different latencies of the inter- vs intra-node messages. The

full list of interconnect messages the simulator supports are shown below in tables 2 and 3.

’ Message Type \ Data Sent | Reason ‘
BusRd Address Cache wants to read line at the given address
BusRdX Address Cache wants to write line at the given address
Data Cache line Cache is responding to directory request to fetch

data at some address (usually because the cache
has a exclusive modified copy and another cache
wants to read it)

Eviction Address Cache has evicted the data at the given address
and thus is no longer sharing it
Broadcast Address, cache line | In MOESI, when a cache writes to a line it owns

it must broadcast the data to all caches that are
sharing that line, so notify the directory to do so

Table 2: Cache — Directory Messages

’ Message Type \ Data Sent | Reason ‘
ReadData Exclusive bit, cache line | Send a cache back a cache line after it asked to
read it, and tell the cache if it has an exclusive
copy of it
WriteData Cache line Send a cache back a cache line after it asked to
write it
Fetch Address Request that the cache sends its data and transi-

tions to a sharing state (or in MOESI, just send
data and remain in owning state)

Invalidate Address Invalidate a line in a sharing cache after a different
cache got exclusive access to the line

Table 3: Directory — Cache Messages

We model a Cache as follows:

struct Set {
Set (int associativity, Protocol protocol);
std::vector<CacheBlock*> blocks_;

I8
class Cache {

public:

Cache (int id, int numa_node, int s, int E, int b, Protocol protocol=MESI);

11



9

10

11

private:
std::vector<Set> sets_;

}

Where the relevant CacheBlock type is constructed to make up the Set based on what protocol is
specified (i.e. MSI/MESI/MOESI), and |sets_| = 2%, |blocks_| = E. The Cache class is responsible
for servicing read/write requests to a given address, updating the state of the CacheBlocks and
communicating with the Directory when necessary to send coherence messages.

The Directory maintains the current state of every line of memory in the NUMANode. It responds
to coherence messages from Caches by updating its internal state and sending more coherence
messages to other caches across the system. For example, upon receiving a BusRdX, it would send
an Invalidate message to all other caches sharing that line, so they have to re-request a fresh copy

of the line on their next read.

struct DirectoryLine {
DirectoryState state_; // U, S, EM
std::vector<bool> presence_;
int owner_; // in MOESI, the cache with the block in 0 state

I8

// defines a mapping { memory line address -> DirectoryLine }
class Directory {
private:

std::unordered_map<unsigned long, DirectoryLine *> directory_;
};

CacheBlock is an abstract class from which the three block types we implemented - MSIBlock,
MESIBlock, and MOESIBlock, inherit from. These classes are responsible for storing the state of the
block based on what protocol they implement, and correctly transitioning between states after being
read/written. After reads/writes, they return the interconnect message that should be sent to the
Directory based on what their new state is. They keep stats on the events that have happened,

such as hits, misses, evictions, invalidations etc.
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3.5 Programs
3.5.1 Locks

In order to implement the lock programs, we took advantage of the atomic types from the C++
standard library. This provided an easy way to use atomic operations such as increment and
exchange without the need to explicitly write assembly code.

The test-and-set and test-and-test-and-set locks are implemented using atomic_exchange func-
tion. This is essentially a test-and-set operation that we can perform on the lock variable. In the
implementation of the ticket lock, two counters are used — one to indicate the next ticket and another
to indicate the ticket currently being served. Atomic operations of load, store, and increment are
used to implement this as a thread needs to increment to set the next ticket, load the current ticket
as it waits, and store the new current ticket when it unlocks.

The array based lock is implemented with an array size of 128. This number was chosen
arbitrarily, but is sufficient for supporting a reasonable large number of threads. In a typical array
based lock implementation, an atomic circular increment is used (i.e. perform x := (x + 1) % n
atomically). This is both difficult to implement and expensive to run. Instead, we use an atomic
fetch and increment followed by a non-atomic modulo. All later indexing into the array likewise
uses a modulo. Since the index into the array becomes ever increasing, this can lead to correctness
issues after billions of uses of the lock. However, this version was sufficient for our tests and easier to
implement. We have an additional implementation of the lock where each array element is aligned

and on separate cache lines.

3.5.2 Evaluation

We wrote a simple program to evaluate the locks. In the program, threads repeatedly acquire the
lock, increment a shared variable, and release the lock. In order to artificially create more contention,
we have each thread sleep for one second while holding the lock. In order to balance the amount
of time it took to run the traces and obtaining more data, we chose for each thread to make 10

increments. We ran this program with each lock type with 2, 4, 8, 16, and 32 threads.
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To evaluate with more realistic programs, we also implemented a simple concurrent binary search
tree which allows for insertions only. The general approach for this was to lock two nodes of the
tree at a time as it traversed down to find where to insert. To balance run time, amount of data,
and managing very large file sizes, we had each thread make 100 insertions of random integers. This
was done with each lock type and 8 threads.

The main thread in both of these programs was just responsible for spawning and joining threads
and did not perform the locking/unlocking computation done by the children threads. This was
intentional, as the work done by thread 0 to set up the program was substantially more expensive
than the simple operations every other thread was performing with the locks, which lead to the
stats collected about the locks being diluted greatly by the large number of operations in setup. We

added the -A flag in order to isolate the stats about the lock performance.

4 Results

We wrote a script to generate plots for all of the metrics we collected, comparing lock types as well

as cache coherence protocols. The most interesting findings are presented below.

4.1 Test-and-Set Locks

One of the most striking findings was how poorly regular test-and-set locks performed relative to
the other locks. The cause for this difference in performance is due to the cache coherence behaviour
of the lock. Since it tries to perform a test-and-set every time it tries to see if the lock is available
(requiring an exclusive copy of the line), there is an invalidation on every lock acquisition attempt.
This is seen in figure 6 which shows that the invalidations and interconnect traffic between NUMA
nodes is orders of magnitude higher than all other locks. This resulted in up to ~10x slowdown on
larger processor counts (see figure 8) for test and set locks compared to the next slowest lock, as the
invalidations meant that main memory had to be accessed frequently which is expensive compared

to cache accesses.
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Figure 6: Test-and-Set Performance (MEST)

4.2 Highest Performance

Firstly, it’s worth noting the difference in the number of reads/writes necessary to implement each
lock, because this varies between the locks, with the simpler test-and-set based locks performing
~ 20% fewer instrutions than the arraylock and ticketlock (see figure 7). Our simulation showed
that this made a big difference, with more cache-performant locks having slower estimated times
due to this overhead.

1e7 Total Operations per lock type, MESI, p=32

2.0+

[
o
L

[y
o
L

Total Operations

arraylockaligned arraylock ticketlock
Lock type

Figure 7: Total operations of each lock type

From our comparisons, the fastest lock was the aligned arraylock. Figure 8 below shows the
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estimated runtimes the simulator calculated for each of the programs, which is based off the stats

collected and our estimated latencies.
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Figure 8: Total Estimated Program Time (MESI)

The aligned arraylock far outperformed any other locks in terms of having fewer memory reads
due to missing infrequently in the cache. It also had the fewest number of invalidations due to
the fact that it has O(1) invalidations per cache per lock release while ticketlock has O(P) and
test-and-test-and-set has O(P?). It’s also interesting to see the implications of false sharing as
demonstrated by the difference between the aligned and unaligned arraylocks, with the unaligned
lock having ~2x as many invalidations and memory reads as its aligned counterpart. The difference
in performance in these areas is illustrated below in figure 9.

The test-and-test-and-set lock (tts lock) performed second best even though its cache performance
was far worse than the unaligned arraylock, which is due to the fact that it requires fewer memory
operations and thus less time to acquire the lock (see figure 7. The ticketlock suffers from both
relatively many operations as well as poor cache performance, so it performs the worst. An interesting
thing to note is that while theoretically the tts lock has O(P?) invalidations and interconnect traffic,
we saw O(P) in our test programs. This was due to the fact that upon the release of the lock, all
copies of the lock are invalidated. Since threads require an exclusive ownership of the line to do the

test-and-set, at most one cache’s line is invalidated per test-and-set attempt since all threads try to
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test-and-set at the same time.
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Figure 9: Performance Characteristics of Arraylock (MESI)

4.3 Cache Coherence Protocols

We also compared performance of the cache coherence protocols we implemented (MSI, MESI,
MOESI) and found some interesting results. The difference between MSI and MESI was most clearly
exhibited by the aligned arraylock, where the benefits of the exclusive state were seen. As figure
10 shows, the lock had a constant number of fewer reads regardless of the number of processors.
The reason for this is when a thread wants to lock the lock, it must increment the index, which is a
read-write operation. In MSI, this results in a BusRd, during which memory is read, and then a
BusRdX, during which memory is read again before sending the WriteData message. However, in
MSI, the processor can get an exclusive copy of the line after the first BusRd and not have to send a
BusRdX the second time.

For the less cache-friendly locks such as ticketlock, we observed noticeable differences between
MOEST and the two other protocols. As shown in figure 11a), there was greater interconnect traffic
with MOESI than the other protocols, which is explained by figure 11b), which shows at higher
processor counts, MOESI is giving a 50% reduction in memory accesses. The reason for this is that

the owning cache is serving memory lines to the other caches instead of flushing to memory, which
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Figure 10: MESI performs better than MSI on arraylock_aligned

causes the interconnect traffic to increase. Since interconnect events are far cheaper than memory

accesses (100x cheaper in our model), this shows the benefits of the MOESI protocol.
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Figure 11: Performance of MOESI vs MESI/MSI

We were also able to observe this behaviour in other programs. In the binary search tree program
with the test-and-set lock, we were able to see that the MOESI protocol led to substantially fewer
memory accesses compared to other protocols (figure 12), as the owning cache can again serve the

data instead of going to memory which leads to a speedup.
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Figure 12: MOESI outperforms other protocols with ts on BST program

5 Conclusion

Our findings above illustrate that effectiveness of our cache simulator in analysing parallel programs
and different cache coherence protocols. Through the statistics provided by the simulator, we
found that aligned arraylocks far outperform the other lock types we implementedin terms of cache
performance, at the cost of higher memory utilization. However, our simulator estimates that
test-and-test-and-set locks operate at roughly the same overall latency as the arraylock due to lower
cost of acquiring/releasing the lock. Our findings also demonstrate the benefits of the MOESI cache
protocol over the MESI and MSI protocols, due to the great reduction in main memory accesses
under certain workloads.

Overall, we feel the project allowed us to explore interesting ideas discussed in class in more depth,
and gave us a greater understanding of the importance of writing cache-friendly code, especially on

multiprocessor shared address space machines.
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7 Work Distribution

7.1 Task Breakdown

Task Performed By
Making the proposal doc Sam
Writing the entire simulator Sam
Making the checkpoint doc Sam
Writing a script to generate all traces and run Sam

simulations on each

Writing the pin tool Brian

Writing lock implementations and parallel BST Brian

Writing a script to generate plots for simulator | Brian and Sam

output
Writing the final doc Brian and Sam
Making final presentation Sam

7.2 Final Distribution

Sam: x%

Brian: y%
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