
Directory Based Cache Coherence Simulator

Sam Flattery (sflatter) Brian Wei (bwei1)

November 4, 2020

Project Website: https://samflattery.github.io/cachesim

1 Summary

We are going to write a cache simulator for a multiprocessor machine with a
NUMA architecture. The simulator will use distributed directory based cache
coherence to maintain coherency between the caches. It will take a trace file of
memory accesses and the processors making those accesses as input and provide
statistics on the program’s cache performance.

2 Background

NUMA (Non Uniform Memory Access) is a multiprocessing computer architec-
ture in which memory access times depend on the proximity of the memory
location to the processor requesting the access. It is often used in distributed
machines, as it means that processors have faster access to their own local mem-
ory than they would have to a global memory shared across all processors, at
the expense of occasional high latency access to memory located further away.

To ensure cache coherence under this architecture, a directory based coher-
ence protocol is often used. The processor that owns a certain line of memory
stores information about each processor that has a copy of the memory in its
cache, or that has exclusive access to that memory. It can then send out point-
to-point messages to the caches that hold the line whenever they must update
their state. This provides a more scalable approach than snooping based co-
herence, where expensive broadcast messages would have to be sent to multiple
processors.

3 Challenges

The main challenge is going to be accurately simulating the state of each cache
directory – we anticipate some of the difficulties will be in generating precise
metrics and accurate timing estimates from the simulator. We also find that

1

https://samflattery.github.io/cachesim


it may be difficult to account for different NUMA architectures including those
with distributed directories.

4 Resources

We will be using Intel’s pin tool in order to generate trace files. pin is a tool
that can dynamically instrument a binary at runtime, which will allow us to
insert code to write the trace files which will be triggered upon memory reads
and writes.

We are considering using QEMU, a machine emulator, to emulate a NUMA
machine so that we can generate trace files that also contain which NUMA node
a memory address resides on.

5 Goals and Deliverables

5.1 Plan to Achieve

• Simulate the state transitions of a multiprocessor NUMA cache using di-
rectory based cache coherence

• Allow the user to customize the cache configuration, such as set sizes and
associativity

• Allow the user to customize the NUMA configuration by specifying how
many NUMA nodes, how many processors, etc.

• Provide metrics such as cache hits, misses, evictions, interconnect mes-
sages, etc., in order for the tool to present statistics on sharing

5.2 Hope to Achieve

• Simulate simple timings of the cache events as well as counting metrics,
such as fixing times for interconnect events, etc.

• Allow the user to set parameters of the NUMA architecture, such as how
far away NUMA nodes are

• Experiment with memory reducing techniques such as limited pointer
schemes and sparse directories

• Compare different state transitions such as MOESI and MOSIF for differ-
ent uses cases

5.3 Deliverables

• Visualizations of the metrics provided by the simulator
• Analysis of sample programs under different cache conditions
• If timing implemented, differences between timings predicted by the sim-

ulator and actual program run times

2



6 Platform

We are not relying on any specialized hardware on which to run our simulator.
We plan on implementing our simulator in C++ since pin uses C/C++ and in
order to maximize performance of the simulator since the trace files will likely
be very large (on the order of megabytes). It is also a language we are both
familiar with.

3



7 Schedule

Week Task Completed

Week 1
• Meet with course instructors and present our ideas
• Submit proposal
• Study directory based cache coherence and come

up with design ideas

Week 2
• Get pin tool working and generate small sample

trace files
• Implement the cache simulators (i.e. tag bits,

dirty bits, evictions, etc.)

Week 3
• Get single directory working for the uniform mem-

ory access case
• Directory should count communication events, im-

plement MESI

Week 4
• Expand system to have multiple distributed direc-

tories on NUMA architectures
• Add intervention / request forwarding

Week 5
• Explore optimizations such as MOSIF / MOESI,

sparse directories
• Stretch goal - add in timing simulation for inter-

connect events, cache misses, etc.

Week 6
• Prepare final presentation, i.e. gather perfor-

mance metrics and visualizations
• Prepare final writeup

4


	Summary
	Background
	Challenges
	Resources
	Goals and Deliverables
	Plan to Achieve
	Hope to Achieve
	Deliverables

	Platform
	Schedule

